Sustainable Housing Construction: Reducing GHG Emissions through Process and Material Innovation

Roshan Shankar, rs2767@princeton.edu

CEE 377: Final Presentation

December 15th 2021

Rationale

- Why Net-zero pathways through construction and materials?
 - Electricity, energy and mobility receive a lot of focus and action due to direct nature of fossil fuel usage, directly seen impacts and market interest.
 - Construction has hidden and embodied emissions.
 - Changes in materials and processes requires long-term planning and regulatory action.
- Why for Portland and Coimbatore?
 - Growing cities but not megapolises yet. Mistakes of megapolises seen widely.
 - Historical sensitivity and understanding towards sustainability.
 - Progressive governance structures and relatively competent operators
 - Close to industrial clusters and natural resources

Goal

- What construction policies can contribute to net-zero pathways?
- Can process innovations reduce GHG emissions for growing cities?
- What new material can aid sustainable construction methods to build homes or parts of homes?
- What is feasible and can be mandated?
- What is desirable and can be encouraged?

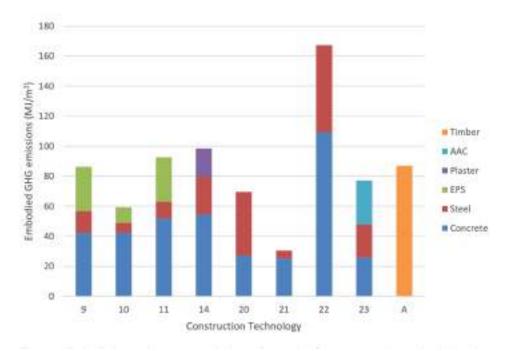
Context

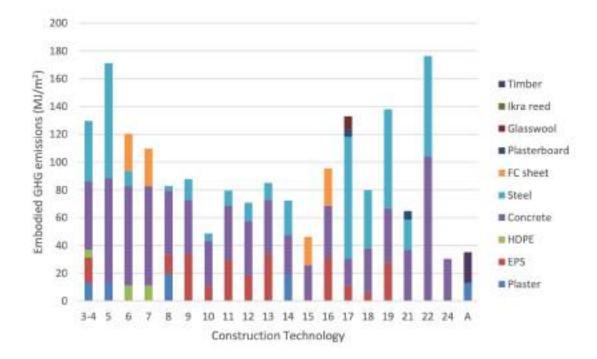
- Building Construction
 - Modular Construction
 - Pre-fabricated Construction

- Policy Change
 - Reduction in Cement and Steel Usage
 - Usage of lower carbon cement and steel
 - Taxation of empty properties/homes
 - Bureaucratic and technical changes to building code

- Adoption of New Materials
 - Portland
 - Mass Timber
 - Straw Bale
 - Coimbatore
 - Hempcrete
 - Bamboo
 - Sugarcane Bagasse
 - Cotton/Agriwaste

Assumptions/Data Sources

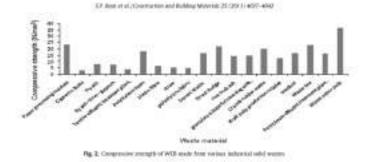

- Population, housing and square footage proxies for Coimbatore taken from Tamil Nadu Statistical Handbook, Coimbatore Smart City and Market Reports
- Industrial and commercial data assumed from Draft Coimbatore Master Plan 2031 and District Census Handbook
- Tamil Nadu Combined Development and Building Rules, 2019 for FAR/FSI and
- Building types and sizes estimated from NSS 76th Round on Drinking, Water and Sanitation 2018
- District Profile and City Corporation merged/normalized to reflect municipal data
- Data for Portland from Open Portland GIS Portal, SmartPDF Data Portal, Portland Government, academic studies or multilateral reports


Takeaways from Baseline Emissions Footprint

- Portland
 - 18 t/Co2 per year
 - Vehicular travel at 28%
 - Commercial and Industrial Electricity combined at 19%
 - Cement emission at 1.5%
- Coimbatore
 - 3.8 t/Co2 per year
 - Residential, Commercial and Industrial Electricity biggest contributors at 30%
 - Wood/wood chips as fuel and food contribute 10% each
 - Cement emission at 13%
 - Very little coal and lower LPG/Kerosene use makes it better than Rajkot worse than Delhi

Better building construction can reduce both cement emissions and energy useage. More relevant for Coimbatore than Portland in relative terms. Similarly relevant in absolute terms.

Pre-fab/modular construction: Not a good idea!



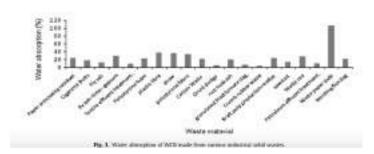


Table 14 EE of prefabricated and conventional building

Components	EE prefabricated building (MJ)	EE conventional building (MJ
Total transportation	267,978.15	115,956.10
Total material	4,229,616.10	3,502,610.57
Plant process	32,524.07	13,046.20
Site process	78,858.17	6530.20
Human labor	40,303.52	93,964.90
Total EE	4,649,280.01	3,732,107.97
Total EE per unit	5.01	4.02
Floor area (GJ/m ²)		

Hemp, Sugarcane Bagasse, Cotton-waste and agri-waste products are sustainable and save emissions but still very small scale

Table 1. Hempcrete Summary Data. [6][4][5]

1 (ha) hemp fiel	d
Hemp from 1 [ha] = 8 [t] hemp	Shiv from 1 [ba] = 4,8 [t] shiv
Hemp from 1 [ha] = 18 [t] CO2 absorbed	Shiv from 1 [ha] = 10 [t] CO ₂ absorbed
1 [m ³] hemperete	
110 [kg] hemp shiv	202 [kg] CO2 absorbed
220 [kg] lime binder	94 [kg] CO2 emitted
Summary for a small house	108 [kg] CO2 absorbed
Benefit of substitution of traditional brick	wall by hemperete [1m2] wall
A traditional brick and block wall emits in its construction	100 [kg/m ²] CO ₂
A 300 [mm] Hempcrete wall absorbs in its construction	-40 [kg/m ²] CO ₂
Nett benefit	140 [kg/m ³] CO ₂
Typical house	
Typical house the wall area = 140 [m ²]	Equates to = 20 [t] CO2
For a typical house the embodied carbon dioxide	50 [t] CO2
Carbon dioxide saving	40%

Table 1 Physics-mechanical properties of particle boards manufactured from various appr-waster.

Agro-maste	Density (kg/m ³)	Thk. (mm)	MOE (MPa)	MOR (MPa)	Water absorption (%)	Thermal conductivity (W/m × K)	Source
Cotton stalk	150-450	25	~75	-0.55	13	0.0585-0.0815	[10]
Banana bunch	1000	3	3361.95	22.30	-	N.A.	[11]
TPM/com peel	789±16	3.5	21.3±5.4	5.6±2.2	53.8±3.2	0.1470 ± 0.0082	[12]
Durian peel and coconut coir	311-856	10	146.413-2239.152	2.934-36.161	227.382-32.291	0.0764-0.1254	[13]
Maize husk	310	16	427	5.2	11-14	0.000348	[14]
Paddy straw	190	16	930	6.5	11-14	0.000229	[14]
Coconut pith	290	16	282	5.8	11-14	0.000314	1148
Groundmut shell	540	16	523	6.3	11-14	0.000548	1141
Kenaf board	150-200	100		-		0.051-0.058	[15]

lavyie	Α	0.000	×
Valuese of FW. or	1997.3	1170.4	1143.5
Valuence of centeral, co	28.04	28.44 51.76 1252.6	28.44
Where of cettan wate in	28.44	33.26	2001.8
Valuence of solid, or	1242.46	1252.6	1281.54
Vaidage	0.29 4 0.06	0.19 # 8.01	0.18 4 801
Specific wit, grains	0.56 ± 0.00	0.65 ± 8.00	0.07 ± 0.03
Demension change on diving, %	121	7.5 ± 1	
pri verscitulges day PW	0.712	0.114	8±1 0.117
pre-cention wasteliges day #W	0.013	10.054	0.058
Senil brouth matimum content, 7	8.85+2	8.1 + 2	64+2
Congressive sewagth, MPa	22.64 c 0.5	22.27 ± 9.5	2134295
Shrinkaar oo competiatos, 1i	36 ± 1	36 c 1	30 t 1
tilatet deservition, X	385±5	101.0 ± 5	90.3 ± 5
Demonstron change on water alternation, 2	8 = 1	Vare I	8.11
Deveate getax	0.598 + 0.81	0.551 ±0.01	0.585±01
ifforestator -	HEL	718.	ML
Therman conductivity (Wind)	0.25+0.00	DC80 A 8.00	0.10 + 0.00

Takle 5

Comparisher a	10014-08-0	different in	INCOMPANYAGE.

Type of Itrick	Compressive strength (MPa)	Water Absorption (by Weight) (11)	Specific leasing to the second	Reference
PW-created	939±489°	100 2.1	0.85 ± 0.02	141
CW-erroret	7.0 ± 0.3	12.8 ± 1.4	1.51 ± 0.00	191
PCW-ceinenik	23.27 e33.8*	189	87.545 e (8.00	Plenetic mail
Barrie stay links	3.35	14.12	1.699 a 0.007	FIGNERS INCOME.
Hy ash heich	10	1464	1.756 ± 0.61	Fieldet with

* WHB 301 shrinkapi

Straw-bale could be useful but doesn't have champions

SHII Program Ibitinated # Homes Pailt Since Founded	Main Locations in Ulah	Estimated Construction Cost Histording Labort	Average Henre Size (Square FootAge) (# Bodycores and Batheneoud	Estimated Are. Embedied Carbon/House (Program Tatal)
Convenantly Rebuilds (10 since 2010)	Moab (Grand County)	848,000 990,000	3000 fe ² 3 bodem, 1 bath	Negative 38,000 fbs. (-12.7 metric tuno)
Ensels Start Vontame * Oro-data, 2018)	Oseau Pleasant Goove (Utah County)	\$26,000-\$70,000	3ND D ²	13,000 Be. (5 metric tons)
Habitat fer Hansanity (241 since 1996)	Cache, Salt Laka, onat Usak, Valleys (state-wide)	8118,000-9728,000	1200 (t ² 2-4 besten, 1 %); (with	30,000 Bes. (134) metrika harve()
Moornandry Community Heating Theat (298 since 2002)	Fork City (Summit County)	\$430,000-\$606,000	3480-1800 ở ² 3-4 begm.s. 2 heb	50,000 Bm. (22.7 myletic turna)
Neighterhood Hausing Solutions (359 since 2001)	Cache Valley (Cache and Box Euler Circuition)	\$140,000-\$140,000	1250-1700-0 ³ 3-4 bedress, 2 both	45,200 3km. (20.4 methic tarte)
Self-Help Hames (400 street 2001)	51. George: 194a/triggen Co.) Over: Power (Dials and Waarkity Cisiantian)	\$566,000-\$366,000	1590-1500 (i ² 3 bodreii, 2 bath	75.001 ibs. (M. rectric toro)

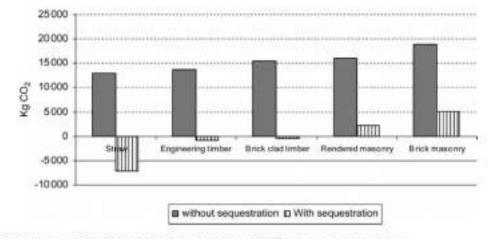


Figure 9 Total house materials CO2 emissions of one of the houses with different external walling systems

Type of 1000 sq. ft. (93 m ²) Home (Typical Materials Used in Foundation, Floors, Walls, Ceiling, and Roofing)	Embodied Carbon for Foundation, Floors, Walls, Windows, Ceiling, and Roofing Materials
Conventional code-compliant (concrete, vinyl flooring and siding, wood framing, OSB, sheetrock, fiberglass batts, asphalt shingles)	22,000 + Ibs. (10,000 kg.)
High-performance conventional, code-compliant (concrete, polystyrene foam board, wood framing, sheetrock, OSB, fiberglass batts, asphalt shingles)	30,000 lbs. (13,500 kg.)
High-performance non-conventional, requiring special permit (if allowed) (minimal concrete, adobe, wood post and beam framing, straw bale insulation, natural lime plasters on interior and exterior walls, recycled metal roofing)	28,000 lbs. (-12,700 kg.) Carbon sequestered

Table 8 Comparison of the total house materials impacts per dwelling					
Construction	Without sequestration		With sequestration		
	Total kg	kg CO ₂ /m ² floor area	Total kg	kg CO ₂ /m ² floor area	

t5t.04

160.57

180.34

18762

220.87

-7075

400

2182

5034

12/062

13769

15 464

10 088

18940

Table 9 Comparison of the whole-life impact of houses with different waiting systems over 60 years

Construction			Withse	questration		
	Total kg CO ₂	kg CO _{2/} m ² floor area	Total kg CO ₂	kg CO ₂ /m ⁴ floor area		
Strew bale	51761	603.6	31739	370.1		
Engineering limber frame	53022	618.3	38.493	448.9		
Brick-clad limber frame				4653		
Rendered masonry	55.069	642.2	41 163	460		
Brick-faced masonry	58 411	681.2	44 506	519		
	Streerbale Engineering Imber frame Brick-clad Imber frame Rendered masonry Brick-faced	Streeve bale 51761 Streeve bale 51761 Engineering Umber frame 53022 Brick-clad Inniber frame 54.904 Brick-clad Inniber frame 55.069 Rendered masonry 55.069 Brick-laced 58.411	sequestration Total kg kg CO ₂ /m ² Total kg kg CO ₂ /m ² Binewbale 51761 603.6 Engineering Innber frame 53.022 618.3 Brick-clad Innber frame 54.004 640.3 Rendered masonry 55.069 642.2 Brick-daced 58.411 681.2	sequestration Total kg CO ₈ kg CO ₂ /m ² floor area Total kg CO ₈ Bitsev bale 51761 603.6 31739 Engineering Imber frame 53022 618.3 38.493 Brick-clad Imber frame 54.904 640.3 39.040 Rendered masonry 55.069 642.2 41.163 Brick-clad 58.411 681.2 44.506		

12

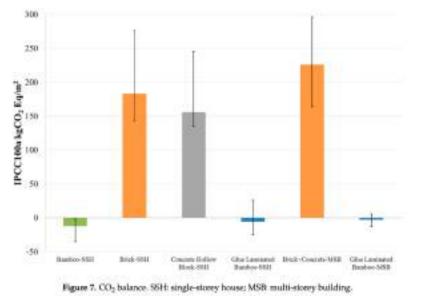
Straw balo

Engineering

frame

Rendered

Brick-faced


masonry

masonry

timber frame

Brick-clad timber

Bamboo Housing should be pushed

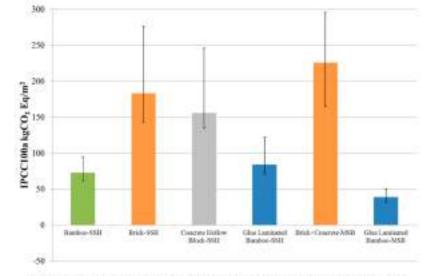
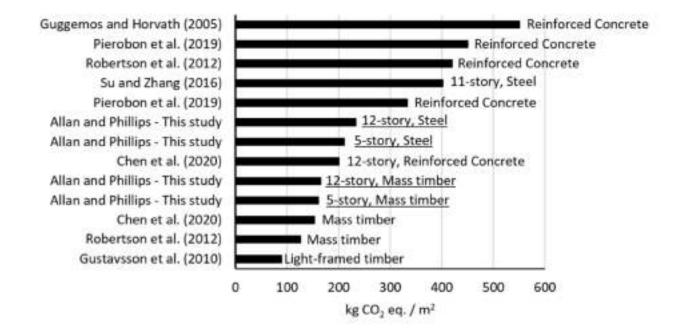


Figure 5. Environmental impact in kgCO2Eq. 55H: single-storey House: MSR: multi-storey building.

Table 2. Contribution to environmental impact analysis

CO ₂ EQ	Bamboo Pole (%)	Brick (%)	Concrete Hollow Block (%)	Concrete (%)	Flattened Bamboo (%)	Glue Laminated Bamboo (%)	Steel (%)	Timber (%)	Transport (%)
Bamboo-SSH	6.4	0.0	1.8	7.9	0.2	0.0	34.7	0.0	49.0
Brick-SSH	0.0	62.7	0.0	4.7	0.0	0.0	15.6	0.0	17.0
Concrete Hollow Block-SSH	0.0	0.0	35.9	8.7	0.0	0.0	28.9	0.0	26.5
Glue Laminated Bamboo-SSH	0.0	0.0	0.0	0.0	0.0	74.4	15.5	0.0	10.1
Brick+Concrete-MSB	0.0	83.6	0.0	9.3	0.0	0.0	0.1	0.0	7.0
Glue Laminated Bamboo-MSB	0.0	0.0	0.0	19.5	0.0	54.2	0.3	11.0	15.0


SSH: single-storey house; MSB: multi-storey building.

Mass Timber needs scale and reforestation

LCA Category	Building ¹	Production (A1-A3) ²	Construction (A4 & A5) ²	End-of-Life (C1-C4) [‡]	Total
	5-story steel	1213 (90%)	77 (6%)	39 (4%)	1349
Global Warming Potential	5-story MT	826 (83%)	90 (9%)	83 (8%)	.999
(10 ⁵ kg CO ₂ eq.)	12-story steel	4112 (90%)	278 (6%)	198 (4%)	4588
45.0.0569350200	12-story MT	2596 (83%)	296 (9%)	252 (8%)	3146
	5-story steel	5387 (80%)	796 (11%)	616 (9%)	7689
Acidification Potential	5-story MT	3576 (75%)	868 (12%)	1006 (13%)	7450
(kg SO2 eq.)	12-story steel	17,614 (78%)	2949 (13%)	2112 (9%)	22,675
	12-story MT	16,844 (74%)	2907 (13%)	3052 (13%)	22,803
	5-story steel	780 (88%)	72 (8%)	36 (4%)	888
Eutrophication Potential	5-story MT	729 (85%)	69 (8%)	61 (7%)	859
(kg N eq.)	12-story steel	2403 (86%)	259 (9%)	126 (5%)	2788
10.555625713	12-story MT	2062 (83%)	229 (9%)	185 (8%)	2476
Smog Potential	5-story steel	79 (65%)	24 (20%)	19 (15%)	135
	5-story MT	96 (62%)	27 (17%)	32 (21%)	135
(10 ³ kg O ₃ eq.)	12-story steel	254 (62%)	91 (22%)	66 (16%)	411
	12-story MT	285 (61%)	85 (18%)	97 (21%)	470

Table 3. Life-cycle assessment (LCA) environmental impact data summarized by life-cycle stage.

1 MT = Mass timber. 2 Number in parenthesis is the life-cycle stage emissions as a percentage of that building's total emissions for the category.

Table 4. LCA global warming potential data for life-cycle stage D.

Building	Stage D GWP (10 ³ kg CO ₂ eq.)	GWP for Stages A-C (10 ³ kg CO ₂ eq.)	GWP for Stages A-D (10 ³ kg CO ₂ eq.)
5-story steel	-71.2	1350	1280
5-story mass timber	-1140	1000	-141
12-story steel	-132	4590	4460
12-story mass timber	-3230	3150	-84.0

Policy Changes need to start now

- Portland has already pioneered
 - Salvage demolition waste and reduce carbon in buildings via better cement
 - Low carbon cement and concrete policy
- Ideas that have shown success and adoption
 - Life-cycle carbon limits for new buildings
 - Material efficient structural design
 - Green public procurement
 - Government leadership in procurement and leasing
 - Property taxation on empty housing can work

Conclusions

- Promote and accelerate bamboo, mass timber and straw bale housing through incentives (tax rebates, preference, permit expedition, subsidy, public procurement, government leadership)
- Encourage new materials in construction by enabling government regulation (hempcrete, agri-waste, sugarcane bagasse, cotton waste)
- Don't artificially adopt modular and pre-fabricated construction techniques without market or GHG emission benefit
- Implement policy changes in building code to start off change in design, architecture and engineering to adopt low carbon cement and reduce carbon embodied in buildings